人人艹人人射-人人艹人人-人人操在线播放-人人操日日干-不卡av免费-波多野结衣一区二区三区中文字幕

美章網 精品范文 函數教案范文

函數教案范文

前言:我們精心挑選了數篇優質函數教案文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。

函數教案

第1篇

一、教材分析

1、教材的地位和作用:

函數是數學中最主要的概念之一,而函數概念貫穿在中學數學的始終,概念是數學的基礎,概念性強是函數理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中學生對函數概念理解的程度會直接影響數學其它知識的學習,所以函數的第一課時非常的重要。

2、教學目標及確立的依據:

教學目標:

(1)教學知識目標:了解對應和映射概念、理解函數的近代定義、函數三要素,以及對函數抽象符號的理解。

(2)能力訓練目標:通過教學培養學生的抽象概括能力、邏輯思維能力。

(3)德育滲透目標:使學生懂得一切事物都是在不斷變化、相互聯系和相互制約的辯證唯物主義觀點。

教學目標確立的依據:

函數是數學中最主要的概念之一,而函數概念貫穿整個中學數學,如:數、式、方程、函數、排列組合、數列極限等都是以函數為中心的代數。加強函數教學可幫助學生學好其他的數學內容。而掌握好函數的概念是學好函數的基石。

3、教學重點難點及確立的依據:

教學重點:映射的概念,函數的近代概念、函數的三要素及函數符號的理解。

教學難點:映射的概念,函數近代概念,及函數符號的理解。

重點難點確立的依據:

映射的概念和函數的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的學生來說不易理解。而且由于函數在高考中可以以低、中、高擋題出現,所以近年來高考有一種“函數熱”的趨勢,所以本節的重點難點必然落在映射的概念和函數的近代定義及函數符號的理解與運用上。

二、教材的處理:

將映射的定義及類比手法的運用作為本課突破難點的關鍵。函數的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數概念的理解帶來更大的困難。為解決這難點,主要是從實際出發調動學生的學習熱情與參與意識,運用引導對比的手法,啟發引導學生進行有目的的反復比較幾個概念的異同,使學生真正對函數的概念有很準確的認識。

三、教學方法和學法

教學方法:講授為主,學生自主預習為輔。

依據是:因為以新的觀點認識函數概念及函數符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數的概念及符號的運用在學生的思想和知識結構中打上深刻的烙印,為學生能學好后面的知識打下堅實的基礎。

學法:四、教學程序

一、課程導入

通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯系在一起。

例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯系在一起?

二.新課講授:

(1)接著再通過幻燈片給出六組學生熟悉的數集的對應關系引導學生總結歸納它們的共同性質(一對一,多對一),進而給出映射的概念,表示符號f:AB,及原像和像的定義。強調指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對應法則f。進一步引導學生總結判斷一個從A到B的對應是否為映射的關鍵是看A中的任意一個元素通過對應法則f在B中是否有唯一確定的元素與之對應。

(2)鞏固練習課本52頁第八題。

此練習能讓學生更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。

例1.給出學生初中學過的函數的傳統定義和幾個簡單的一次、二次函數,通過畫圖表示這些函數的對應關系,引導學生發現它們是特殊的映射進而給出函數的近代定義(設A、B是兩個非空集合,如果按照某種對應法則f,使得A中的任何一個元素在集合B中都有唯一的元素與之對應則這樣的對應叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對應法則f),并說明把函f:AB記為y=f(x),其中自變量x的取值范圍A叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{f(x):x∈A}叫做函數的值域。

并把函數的近代定義與映射定義比較使學生認識到函數與映射的區別與聯系。(函數是非空數集到非空數集的映射)。

再以讓學生判斷的方式給出以下關于函數近代定義的注意事項:

2.函數是非空數集到非空數集的映射。

3.f表示對應關系,在不同的函數中f的具體含義不一樣。

4.f(x)是一個符號,不表示f與x的乘積,而表示x經過f作用后的結果。

5.集合A中的數的任意性,集合B中數的唯一性。

6.“f:AB”表示一個函數有三要素:法則f(是核心),定義域A(要優先),值域C(上函數值的集合且C∈B)。

三.講解例題

例1.問y=1(x∈A)是不是函數?

解:y=1可以化為y=0*X+1

畫圖可以知道從x的取值范圍到y的取值范圍的對應是“多對一”是從非空數集到非空數集的映射,所以它是函數。

[注]:引導學生從集合,映射的觀點認識函數的定義。四.課時小結:

1.映射的定義。

2.函數的近代定義。

3.函數的三要素及符號的正確理解和應用。

4.函數近代定義的五大注意點。

五.課后作業及板書設計

第2篇

(一)教學知識點:1.對數函數的概念;2.對數函數的圖象和性質.

(二)能力訓練要求:1.理解對數函數的概念;2.掌握對數函數的圖象和性質.

(三)德育滲透目標:1.用聯系的觀點分析問題;2.認識事物之間的互相轉化.

教學重點:

對數函數的圖象和性質

教學難點:

對數函數與指數函數的關系

教學方法:

聯想、類比、發現、探索

教學輔助:

多媒體

教學過程:

一、引入對數函數的概念

由學生的預習,可以直接回答“對數函數的概念”

由指數、對數的定義及指數函數的概念,我們進行類比,可否猜想有:

問題:1.指數函數是否存在反函數?

2.求指數函數的反函數.

①;

②;

③指出反函數的定義域.

3.結論

所以函數與指數函數互為反函數.

這節課我們所要研究的便是指數函數的反函數——對數函數.

二、講授新課

1.對數函數的定義:

定義域:(0,+∞);值域:(-∞,+∞)

2.對數函數的圖象和性質:

因為對數函數與指數函數互為反函數.所以與圖象關于直線對稱.

因此,我們只要畫出和圖象關于直線對稱的曲線,就可以得到的圖象.

研究指數函數時,我們分別研究了底數和兩種情形.

那么我們可以畫出與圖象關于直線對稱的曲線得到的圖象.

還可以畫出與圖象關于直線對稱的曲線得到的圖象.

請同學們作出與的草圖,并觀察它們具有一些什么特征?

對數函數的圖象與性質:

圖象

性質(1)定義域:

(2)值域:

(3)過定點,即當時,

(4)上的增函數

(4)上的減函數

3.圖象的加深理解:

下面我們來研究這樣幾個函數:,,,.

我們發現:

與圖象關于X軸對稱;與圖象關于X軸對稱.

一般地,與圖象關于X軸對稱.

再通過圖象的變化(變化的值),我們發現:

(1)時,函數為增函數,

(2)時,函數為減函數,

4.練習:

(1)如圖:曲線分別為函數,,,,的圖像,試問的大小關系如何?

(2)比較下列各組數中兩個值的大小:

(3)解關于x的不等式:

思考:(1)比較大小:

(2)解關于x的不等式:

三、小結

這節課我們主要介紹了指數函數的反函數——對數函數.并且研究了對數函數的圖象和性質.

第3篇

②應用對數函數的性質可以解決:對數的大小比較,求復

合函數的定義域、值域及單調性。

③注重函數思想、等價轉化、分類討論等思想的滲透,提高

解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1比較數的大小

例1比較下列各組數的大小。

⑴loga5.1,loga5.9(a>0,a≠1)

⑵log0.50.6,logЛ0.5,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大?。?/p>

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大?。寒?<a<1時,函數y=logax單

調遞減,所以loga5.1>loga5.9;當a>1時,函數y=logax單調遞

增,所以loga5.1<loga5.9。

板書:

解:Ⅰ)當0<a<1時,函數y=logax在(0,+∞)上是減函數,

5.1<5.9loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

5.1<5.9loga5.1<loga5.9

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大???

生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5<log0.50.6<lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函

數的單調性比大小,②借用“中間量”間接比大小,③利用對數

函數圖象的位置關系來比大小。

2函數的定義域,值域及單調性。

例2⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要

使函數有意義。若函數中含有分母,分母不為零;有偶次根式,

被開方式大于或等于零;若函數中有對數的形式,則真數大于

零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求

它們共同作用的結果。)

生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:2x-1≠0x≠0.5

log0.8x-1≥0,x≤0.8

x>0x>0

x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:x2+2x-3>0x<-3或x>1

(3x+3)>0,x>-1

x2+2x-3<(3x+3)-2<x<3

不等式的解為:1<x<3

例3求下列函數的值域和單調區間。

⑴y=log0.5(x-x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y=log0.5u,u=x-x2復合而成。

板書:

解:⑴u=x-x2>0,0<x<1

u=x-x2=-(x-0.5)2+0.25,0<u≤0.25

y=log0.5u≥log0.50.25=2

y≥2

xx(0,0.5]x[0.5,1)

u=x-x2

y=log0.5u

y=log0.5(x-x2)

函數y=log0.5(x-x2)的單調遞減區間(0,0.5],單調遞增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則

函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什

么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能

通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0<a<1時,分別在各單調區間上求它的反函數。

⑶已知函數y=loga(a>0,b>0,且a≠1)

①求它的定義域;②討論它的奇偶性;③討論它的單調性。

⑷已知函數y=loga(ax-1)(a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的

單調性。

5.課堂教學設計說明

主站蜘蛛池模板: 派拉蒙影业| 电影善良的妻子| 马子俊| 南来北往分集剧情| 电影壮志凌云女版满天星法版在线看| 起底员工上满8小时被扣工资的公司| 家书1000字| 电影网1905免费版| 许良| 恐怖故事电影| 我的电影在线观看| 小小少年电影简介| 拿铁热量高吗| 王李| 乡村女教师乱淫交片| 电影《遗产》韩国丧尸| 丁丁历险记电影| 电影双面情人| 等着你电影韩版| 单位同意报考证明| 2 broke girls| 复制情人之意识转移| 色域在线| 哈尔的移动城堡电影免费观看国语| 永远是少年电影免费观看| 重启之蛇骨佛蜕免费观看完整版| 花落花开电影| 春节到,人欢笑,贴窗花,放鞭炮| 女孩的叔叔| 《起风了》数字简谱| 我仍在此 电影| 《平凡之路》电影| 贝子鸟的叫声大全| 澳大利亚《囚犯》| 香港艳情电影| 电视剧瞧这一家子演员表| 亚洲 在线| 11.27| 被打屁股作文| 久草电影| 电视剧《惊蛰》演员表|